Tyrosine-phosphorylation of AAV2 vectors and its consequences on viral intracellular trafficking and transgene expression.
نویسندگان
چکیده
We have documented that epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK) signaling negatively affects intracellular trafficking and transduction efficiency of recombinant adeno-associated virus 2 (AAV2) vectors. Specifically, inhibition of EGFR-PTK signaling leads to decreased ubiquitination of AAV2 capsid proteins, which in turn, facilitates viral nuclear transport by limiting proteasome-mediated degradation of AAV2 vectors. In the present studies, we observed that AAV capsids can indeed be phosphorylated at tyrosine residues by EGFR-PTK in in vitro phosphorylation assays and that phosphorylated AAV capsids retain their structural integrity. However, although phosphorylated AAV vectors enter cells as efficiently as their unphosphorylated counterparts, their transduction efficiency is significantly reduced. This reduction is not due to impaired viral second-strand DNA synthesis since transduction efficiency of both single-stranded AAV (ssAAV) and self-complementary AAV (scAAV) vectors is decreased by approximately 68% and approximately 74%, respectively. We also observed that intracellular trafficking of tyrosine-phosphorylated AAV vectors from cytoplasm to nucleus is significantly decreased, which results from ubiquitination of AAV capsids followed by proteasome-mediated degradation, although downstream consequences of capsid ubiquitination may also be affected by tyrosine-phosphorylation. These studies provide new insights into the role of tyrosine-phosphorylation of AAV capsids in various steps in the virus life cycle, which has implications in the optimal use of recombinant AAV vectors in human gene therapy.
منابع مشابه
A dual role of EGFR protein tyrosine kinase signaling in ubiquitination of AAV2 capsids and viral second-strand DNA synthesis.
A 52 kd cellular protein, FK506-binding protein (FKBP52), phosphorylated at tyrosine residues by epidermal growth factor receptor protein tyrosine kinase (EGFR-PTK), inhibits adeno-associated virus 2 (AAV2) second-strand DNA synthesis and transgene expression. FKBP52 is dephosphorylated at tyrosine residues by T-cell protein tyrosine phosphatase (TC-PTP), and TC-PTP over-expression leads to imp...
متن کاملDifferences in growth promotion, drug response and intracellular protein trafficking of FLT3 mutants
Objective(s): Mutant forms FMS-like tyrosine kinase-3 (FLT3), are reported in 25% of childhood acute lymphoid leukemia (ALL) and 30% of acute myeloid leukemia (AML) patients. In this study, drug response, growth promoting, and protein trafficking of FLT3 wild-type was compared with two active mutants (Internal Tandem Duplication (ITD)) and D835Y. Materials and Methods:FLT3 was expressed on fact...
متن کاملHigh Throughput Screening for the Enhancement of Adeno-Associated Virus Type 2 Transduction
Adeno-associated virus (AAV) is a promising vector for human gene therapy. Although more effective than non-viral vectors, AAV still requires improvement in efficacy in order to become a successful gene therapy vector. With this in mind, we have sought to identify and examine identified enhancers of adeno-associated virus type 2 (AAV2) transduction. Using a high throughput screening system with...
متن کاملImpaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts.
Although adeno-associated virus type 2 (AAV) has gained attention as a potentially useful alternative to the more commonly used retrovirus- and adenovirus-based vectors for human gene therapy, efficient gene transfer and transgene expression by AAV vectors require that the following two obstacles be overcome. First, the target cell must express the receptor and the coreceptor for AAV infection,...
متن کاملGeneration of Helper Plasmids Encoding Mutant Adeno-associated Virus Type 2 Capsid Proteins with Increased Resistance against Proteasomal Degradation
Objective(s): Adeno-associated virus type 2 (AAV2) vectors are widely used for both experimental and clinical gene therapy. A recent research has shown that the performance of these vectors can be greatly improved by substitution of specific surface-exposed tyrosine residues with phenylalanines. In this study, a fast and simple method is presented to generate AAV2 vector helper plasmids encod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Virology
دوره 381 2 شماره
صفحات -
تاریخ انتشار 2008